Errata

The following are corrections to the Journal of Pharmacy and Pharmacology 1999, Volume 51

Y. Sakagami et al. Electron-microscopic study of the bactericidal effect of OPB-2045, a new monobiguanide disinfectant produced from biguanide group compounds, against *Pseudomonas aeruginosa*. 51 (2): 201–206

p. 204, Figure 10 was incorrect; the corrected version of p. 204 is reproduced overleaf.

P. Curtis-Prior et al. Therapeutic value of *Ginkgo biloba* in reducing symptoms of decline in mental function. 51 (5): 535-541

In the list of authors, "PAUL FRAY" should be written "PAUL FRAY*", indicating his affiliation with CeNeS Limited.

In the Abstract, the word "meta-analysis" should be deleted.

On p. 536, "Chesney 1997" should read "McChesney 1997"

On p. 538, "...double-blindness were repeated." should read "...double-blindness were reported."

On p. 540, "... prove useful in most ... " should read "... prove most useful in ... "

In the Acknowledgements, Dr Melanie O'Neill supplied the data for Table 1, not for Figure 1.

Table 1 incorrectly indicated which top-selling medicines were chemically related to plant-derived products; the correct table is reprinted below.

3.78	*Cyclosporin	1.29
2.31	Nifedipine	1.27
2.30	*Lovastatin	1.25
2.07	Amlopidine	1.24
1.96	Nifedipine	1.14
1.54	*Pravastatin	1.12
1.45	Diltiazem	1.10
1.43	*Cetriaxone	1.09
1.32	*Clarithromycin	1.05
1.30	Paracetamol	1.05
	3.78 2.31 2.30 2.07 1.96 1.54 1.45 1.43 1.32 1.30	3.78*Cyclosporin2.31Nifedipine2.30*Lovastatin2.07Amlopidine1.96Nifedipine1.54*Pravastatin1.45Diltiazem1.43*Cetriaxone1.32*Clarithromycin1.30Paracetamol

Table 1. Top-selling medicines in 1995 (US\$ billion).

*Compounds chemically related to naturally derived materials.

K. Yokogawa et al. Characteristics of L-carnitine transport in cultured human hepatoma HLF cells. 51 (8): 935–940

On p. 939, the concentrations of some of the inhibitory compounds in Table 4 were given incorrectly. Table 4 should read as follows:

Table 4. Inhibitory effect of structural analogues on the uptake of L-carnitine by HLF cells.

Compound	Concentration (mM)	Uptake (%)
L-Carnitine	0.01	$29.3 \pm 2.7**$
D-Carnitine	0.01	$60.7 \pm 8.2*$
Betaine	0.01	$25.4 \pm 0.9 **$
y-Butyrobetaine	0.01	$62.5 \pm 2.1*$
L-Acetylcarnitine	0.01	$34.9 \pm 0.6 **$
γ-Aminobutyric acid	1	78.8 ± 2.4
β -Alanine	1	79.4 ± 2.2
Glycine	1	103.2 ± 1.2
Choline	1	80.7 ± 4.9
Acetylcholine	1	97.3 ± 5.4

HLF cells were preincubated for 15 min in Krebs-Ringer buffer at 37°C; [³H] L-carnitine (1.27 nM) was then added and incubation was continued for 5 min. Data (uptake of [³H] L-carnitine as a percentage of that in the absence of the analogues) are means \pm s.e.m. of results from three experiments. **P* < 0.05, ***P* < 0.01 compared with control.

Figure 7. Bactericidal effect of OPB-2045 against *Pseudomonas aeruginosa* observed by ultra-thin section of transmission electron microscopy-OPB-2045 $125 \,\mu g \,m L^{-1}$ treatment, $37^{\circ}C$, $30 \min (\times 20\,000$ Scale $1 \,\mu m$).

Figure 8. Bactericidal effect of OPB-2045 against *Pseudomonas aeruginosa* observed by ultra-thin section of transmission electron microscopy-OPB-2045 6-25 μ g mL⁻¹ treatment, 37°C, 6 h (\times 20 000 Scale 1 μ m).

Figure 9. *Pseudomonas aeruginosa* (control) observed by scanning electron microscopy (\times 5000 Scale 1 μ m).

Figure 10. Bactericidal effect of OPB-2045 against *Pseudo-monas aeruginosa* observed by scanning electron microscopy-OPB-2045 $6.25 \,\mu g \, mL^{-1}$ treatment, $37^{\circ}C$, $30 \min$ (× 5000 Scale 1 μ m).

Figure 11. Bactericidal effect of OPB-2045 against *Pseudo-monas aeruginosa* observed by scanning electron microscopy-OPB-2045 $25 \,\mu \text{g mL}^{-1}$ treatment, 37°C , $30 \,\text{min}$ (× 5000 Scale 1 μ m).

Figure 12. Bactericidal effect of OPB-2045 against *Pseudomonas aeruginosa* observed by scanning electron microscopy-OPB-2045 $6.25 \,\mu g \, mL^{-1}$ treatment, 37°C, 6h (× 5000 Scale 1 μm).